D. Persamaan garis singgung lingkaran
1. Garis singgung lingkaran melalui sebuah titik lingkaran
* Garis singgung lingkaran melalui sebuah titik pada lingkaran ditentukan dengan rumus
* Persamaan garis singgung melaui titik P pada lingkaran
dinyatakan dengan rumus :
*Persamaan garis singgung melaui titik P pada lingkaran dinyatakan dengan rumus :
2. Garis singgung dengan gradien yang diketahui.
* Jika garis y = mx + n menyinggung lingkaran , maka persamaan garis singgungnya adalah : * Jika garis y = mx + n menyinggung lingkaran
Maka persamaan garis singgungnya :
3. Garis singgung melalui sebuah titik diluar lingkaran
Dari suatu titik P yang terletak di luar garis lingkaran dapat dibentuk dua garis singgung.
Persamaan umum garis singgung lingkaran melalui sebuah titik P terletak di luar garis lingkaran adalah :
Langkah menentukan gradien ( m ) untuk persamaan (10) adalah sebagai berikut :
1. Substitusikan persamaan ke persamaan lingkaran sehingga diperoleh suatu persamaan kuadrat.
2. Dengan mengambil nilai D=0 , maka dipetoleh nilai m.
Sumber : http://www.rumus.web.id/matematika/rumus-persamaan-lingkaran-matematika/
Tidak ada komentar:
Posting Komentar